New paper: Impact of heat and mass transport on Rayleigh–Taylor instability of Walter’s B viscoelastic fluid layer

The behavior of viscous fluid-Walter’s B viscoelastic fluid interface in a planar configuration is investigated through an irrotational flow theory. The interface is transferring heat and mass from one fluid phase to the other. The viscoelastic fluid lies above the viscous fluid, and therefore, the interface is accepting the Rayleigh–Taylor instability. The linear stability theory is employed, and an explicit relationship between perturbation’s growth and wavenumber is established. The implicit stability criterion is achieved and analyzed numerically through the Newton–Raphson numerical scheme. The nature of the interface is examined for various non-dimensional parameters such as Atwood number, Weber number, Froude number, Reynolds number, etc. by means of stability plots. The results are discussed for the various values of gravitational acceleration through the variation of the Froude number. The instability is postponed if the interface experiences more heat transfer. Additionally, compared to the Walter's B fluid interface, the Newtonian fluid interface has proven to be more stable.

Contact persons: Satyvir Singh

Previous Post Next Post